metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

{*µ-N,N,N',N'*-Tetrakis[(diphenylphosphanyl)methyl]benzene-1,4diamine}bis[(2,2'-bipyridyl)copper(I)] bis(tetrafluoridoborate)

Lun-Zhong Luo, Zong-Wei Yang,* Zhi-Bin Wang and Zhang Hong

SiChuan College of Chemical Technology, Luzhou 646005, People's Republic of China

Correspondence e-mail: yangweizong_1@126.com

Received 4 July 2011; accepted 20 July 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; disorder in solvent or counterion; R factor = 0.065; wR factor = 0.173; data-to-parameter ratio = 14.2.

In the title compound, $[Cu_2(C_{10}H_8N_2)_2(C_{58}H_{52}N_2P_4)](BF_4)_2$, the dinuclear cation lies on an inversion centre. The Cu^I atom is coordinated by two N atoms from a 2,2'-bipyridine ligand and two P atoms from an N,N,N',N'-tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine ligand in a distorted tetrahedral geometry. In the crystal, intermolecular C— H···F hydrogen bonds link the ions into layers parallel to [$\overline{101}$]. π - π interactions [centroid–centroid distance = 3.668 (4) Å] are also observed. One F atom of the anion is disordered over two orientations with a refined occupancy ratio of 0.675 (13):0.325 (13).

Related literature

For the synthesis, structure and applications of related copper(I) complexes, see: Chan *et al.* (1998); Chen *et al.* (2009); Linfoot *et al.* (2010); Yang *et al.* (2005); Zhang *et al.* (2007).

Experimental

Crystal data

 $\begin{array}{l} [\mathrm{Cu}_2(\mathrm{C}_{10}\mathrm{H_8}\mathrm{N}_2)_2(\mathrm{C}_{58}\mathrm{H}_{52}\mathrm{N}_2\mathrm{P}_4)] \\ (\mathrm{BF}_4)_2 \\ M_r = 1513.96 \\ \mathrm{Monoclinic}, \ P2_1/n \\ a = 9.912 \ (6) \ \mathrm{\mathring{A}} \\ b = 20.472 \ (10) \ \mathrm{\mathring{A}} \\ c = 17.938 \ (10) \ \mathrm{\mathring{A}} \end{array}$

Data collection

Rigaky Mercury CCD diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.866, T_{\rm max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.173$ S = 1.026395 reflections 451 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C20 - H20A \cdots F1B^{i}$ $C30 - H30A \cdots F2^{ii}$ $C32 - H32A = F2^{ii}$	0.93 0.93	2.43 2.31	3.36 (2) 3.216 (9)	171 164
Symmetry codes: (i) $-x$	+1, -y, -z +	$\frac{2.42}{1; (ii) x - \frac{1}{2}, -y}$	3.319(8) $y + \frac{1}{2}, z + \frac{1}{2}; (iii) x$	$\frac{161}{-1, y, z + 1.}$

 $\beta = 91.630 (7)^{\circ}$

Z = 2

V = 3638 (3) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.20 \times 0.20$ mm

31355 measured reflections

6395 independent reflections

4944 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.74 \text{ mm}^{-1}$ T = 293 K

 $R_{\rm int} = 0.070$

11 restraints

 $\Delta \rho_{\rm max} = 0.64 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

Data collection: *CrystalClear-SM Expert* (Rigaku, 2009); cell refinement: *CrystalClear-SM Expert*; data reduction: *CrystalClear-SM Expert*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2624).

References

- Chan, W.-H., Peng, S.-M. & Che, C.-M. (1998). J. Chem. Soc. Dalton Trans. pp. 2867–2872.
- Chen, Y., Chen, J.-S., Gan, X. & Fu, W.-F. (2009). *Inorg. Chim. Acta*, **362**, 2492–2498.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Linfoot, C. L., Richardson, P., Hewat, T. E., Moudam, O., Forde, M. M., Collins, A., White, F. & Robertson, N. (2010). *Dalton Trans.* **39**, 8945–8956. Rigaku (2009). *CrystalClear-SM Expert*. Rigaku Corporation, Tokyo, Japan.

 Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
 Yang, L., Feng, J.-K., Ren, A.-M., Zhang, M., Ma, Y.-G. & Liu, X.-D. (2005). Eur. J. Inorg. Chem. pp. 1867–1879.

Zhang, Q., Ding, J., Cheng, Y., Wang, L., Xie, Z., Jing, X. & Wang, F. (2007). Adv. Funct. Mater. 17, 2983–2990.

Acta Cryst. (2011). E67, m1146 [doi:10.1107/S1600536811029333]

{*µ*-*N*,*N*',*N*'-Tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine}bis[(2,2'-bipyridyl)copper(I)] bis(tetrafluoridoborate)

L.-Z. Luo, Z.-W. Yang, Z.-B. Wang and Z. Hong

Comment

Copper(I) complexes containing phosphine and nitrogen ligands have been reported to possess catalytic and luminescent properties (Chan *et al.*, 1998; Chen *et al.*, 2009; Linfoot *et al.*, 2010; Yang *et al.*, 2005; Zhang *et al.*, 2007). As a contribution to this research field, we have synthesized the new dinuclear copper(I) title complex and report its crystal structure herein.

In the title compound (Fig. 1), the dinuclear cation has crystallographically imposed inversion symmetry, the central benzene ring of the *N*,*N*,*N*',*N*'-tetra[(diphenylphosphanyl)-methyl]benzene-1,4-diamine ligand (dpppda) lying about a centre of symmetry. Each copper(I) atom adopts a distorted tetrahedral geometry provided by two N atoms from a 2,2'-bipyridine ligand and two P atoms from the dpppda ligand. The Cu—P and Cu—N bond distances are in the range 2.2175 (17)–2.2198 (16) and 2.039 (4)–2.050 (4) Å, respectively. In the crystal structure cations and anions are linked by C—H…F hydrogen bonds (Table 1) into layers parallel to the [T 0 1] plane. π - π interactions involving the N3/C35-C39 rings of adjacent 2,2'-bipyridine ligands (centroid-to-centroid distance = 3.668 (4) Å) are also observed (Fig. 2).

Experimental

To a solution of 2,2'-bipyridine (0.0312 g, 0.2 mmol) and N,N,N',N'-tetra[(diphenylphosphanyl)-methyl]benzene-1,4-diamine (0.0900 g, 0.10 mmol) in CH₃CN (5 ml) Cu(CH₃CN)₄]BF₄(0.0656 g, 0.2 mmol) was added with stirring. The resulting yellow solution was allowed to stir for 0.5 h. Block-shaped yellow crystals suitable for X-ray analysis were formed by slow diffusion of diethyl ether into the solution (yield: 30%).

Refinement

All hydrogen atoms were generated geometrically and refined using a riding model, with C—H = 0.93-0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$. The F1 atom is disordered over two orientations, which were refined isotropically with occupancy ratio of 0.675 (13):0.325 (13). The B–F bond lengths in the anion were restrained to 1.32 (2) Å. The displacement parameters of the C25 atom were restrained to be isotropic by means of the instruction ISOR (tolerance 0.01) in *SHELXL-97*.

Figures

Fig. 1. The molecular structure of title compound with displacement ellipsoids drawn at 30% probability level. Hydrogen atoms are omitted for clarity. Unlabelled atoms are related to the labelled atoms by the symmetry operation 1-x, -y, 1-z.

Fig. 2. Partial packing diagram of the title compound showing a π - π interaction as dashed line. Hydrogen atoms are omitted for clarity.

$\{\mu - N, N, N', N'$ - Tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine}bis[(2,2'- bipyridyl)copper(I)] bis(tetrafluoridoborate)

Crystal data

$[Cu_2(C_{10}H_8N_2)_2(C_{58}H_{52}N_2P_4)](BF_4)_2$	F(000) = 1556
$M_r = 1513.96$	$D_{\rm x} = 1.382 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 7518 reflections
<i>a</i> = 9.912 (6) Å	$\theta = 2.1 - 27.5^{\circ}$
b = 20.472 (10) Å	$\mu = 0.74 \text{ mm}^{-1}$
c = 17.938 (10) Å	<i>T</i> = 293 K
$\beta = 91.630 \ (7)^{\circ}$	Prism, yellow
$V = 3638 (3) \text{ Å}^3$	$0.20\times0.20\times0.20\ mm$
Z = 2	

Data collection

Rigaky Mercury CCD diffractometer	6395 independent reflections
Radiation source: fine-focus sealed tube	4944 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.070$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$k = -24 \rightarrow 24$
$T_{\min} = 0.866, T_{\max} = 1.000$	$l = -21 \rightarrow 21$
31355 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.065$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.173$	H-atom parameters constrained
<i>S</i> = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.079P)^2 + 4.5666P]$ where $P = (F_o^2 + 2F_c^2)/3$
6395 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
451 parameters	$\Delta \rho_{\rm max} = 0.64 \ {\rm e} \ {\rm \AA}^{-3}$

11 restraints

 $\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Cu1	0.14600 (5)	0.06738 (3)	0.78116 (3)	0.0534 (2)	
P2	0.07845 (11)	0.06121 (6)	0.66233 (6)	0.0487 (3)	
Р3	0.36642 (11)	0.05056 (6)	0.77515 (6)	0.0488 (3)	
N1	0.3460 (3)	0.03687 (17)	0.62451 (18)	0.0463 (8)	
N3	0.0160 (4)	0.0323 (2)	0.8576 (2)	0.0574 (9)	
C4	0.2202 (4)	0.0676 (2)	0.5974 (2)	0.0523 (11)	
H4A	0.1930	0.0476	0.5504	0.063*	
H4B	0.2376	0.1134	0.5880	0.063*	
C17	0.4184 (4)	0.0759 (2)	0.6819 (2)	0.0492 (10)	
H17A	0.3985	0.1219	0.6745	0.059*	
H17B	0.5149	0.0698	0.6776	0.059*	
C2	0.4275 (4)	0.0188 (2)	0.5622 (2)	0.0420 (9)	
C11	-0.0408 (4)	0.1208 (2)	0.6247 (2)	0.0514 (10)	
N2	0.1007 (4)	0.1529 (2)	0.8344 (2)	0.0584 (9)	
C35	-0.0349 (5)	0.0794 (3)	0.9017 (2)	0.0616 (12)	
C3	0.5274 (4)	0.0590 (2)	0.5345 (2)	0.0485 (10)	
H3A	0.5462	0.0989	0.5572	0.058*	
C5	-0.0030 (4)	-0.0164 (2)	0.6417 (2)	0.0538 (10)	
C16	-0.1308 (4)	0.1484 (2)	0.6721 (3)	0.0587 (11)	
H16A	-0.1273	0.1372	0.7224	0.070*	
C34	0.0164 (4)	0.1461 (2)	0.8906 (2)	0.0575 (11)	
C18	0.4462 (4)	-0.0284 (2)	0.7868 (2)	0.0543 (11)	
C10	-0.1359 (5)	-0.0203 (3)	0.6130 (3)	0.0625 (12)	
H10A	-0.1808	0.0177	0.5985	0.075*	
C36	-0.1313 (6)	0.0644 (3)	0.9537 (3)	0.0850 (17)	
H36A	-0.1653	0.0967	0.9844	0.102*	
C12	-0.0462 (5)	0.1384 (3)	0.5504 (3)	0.0702 (14)	
H12A	0.0133	0.1199	0.5173	0.084*	
C15	-0.2269 (5)	0.1926 (3)	0.6460 (3)	0.0698 (14)	
H15A	-0.2887	0.2102	0.6785	0.084*	
C33	-0.0191 (6)	0.1995 (3)	0.9335 (3)	0.0823 (16)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H33A	-0.0750	0.1938	0.9738	0.099*	
C13	-0.1408 (5)	0.1841 (3)	0.5252 (3)	0.0777 (15)	
H13A	-0.1428	0.1969	0.4754	0.093*	
C9	-0.2007 (6)	-0.0791 (3)	0.6060 (3)	0.0799 (16)	
H9A	-0.2887	-0.0805	0.5867	0.096*	
C6	0.0604 (6)	-0.0745 (3)	0.6634 (3)	0.0733 (14)	
H6A	0.1481	-0.0735	0.6833	0.088*	
C19	0.3733 (6)	-0.0810 (3)	0.8127 (3)	0.0756 (15)	
H19A	0.2828	-0.0755	0.8237	0.091*	
C8	-0.1382 (7)	-0.1347 (3)	0.6268 (3)	0.0890 (18)	
H8A	-0.1838	-0.1743	0.6218	0.107*	
C21	0.5626 (9)	-0.1505 (3)	0.8062 (4)	0.102 (2)	
H21A	0.6011	-0.1916	0.8121	0.123*	
C30	0.1472 (6)	0.2130 (3)	0.8191 (3)	0.0769 (15)	
H30A	0.2062	0.2181	0.7802	0.092*	
C23	0.5806 (6)	-0.0389 (3)	0.7710 (3)	0.0792 (15)	
H23A	0.6321	-0.0045	0.7535	0.095*	
C38	-0.1238 (7)	-0.0460 (4)	0.9148 (4)	0.095 (2)	
H38A	-0.1529	-0.0891	0.9186	0.114*	
C14	-0.2306 (5)	0.2101 (3)	0.5729 (3)	0.0717 (14)	
H14A	-0.2947	0.2400	0.5555	0.086*	
C22	0.6391 (7)	-0.0995 (4)	0.7807 (4)	0.096 (2)	
H22A	0.7295	-0.1058	0.7702	0.115*	
C7	-0.0071 (8)	-0.1341 (3)	0.6556 (4)	0.0917 (19)	
H7A	0.0354	-0.1729	0.6696	0.110*	
C39	-0.0272 (5)	-0.0287 (3)	0.8640 (3)	0.0748 (14)	
H39A	0.0084	-0.0608	0.8336	0.090*	
C37	-0.1751 (7)	0.0016 (4)	0.9590 (4)	0.102 (2)	
H37A	-0.2407	-0.0089	0.9931	0.123*	
C31	0.1106 (7)	0.2672 (3)	0.8592 (4)	0.0900 (18)	
H31A	0.1427	0.3083	0.8466	0.108*	
C32	0.0276 (7)	0.2599 (3)	0.9169 (4)	0.0947 (19)	
H32A	0.0027	0.2959	0.9450	0.114*	
F3	0.8501 (6)	0.1767 (2)	0.0998 (3)	0.154 (2)	
C1	0.4009 (4)	-0.0397 (2)	0.5269 (2)	0.0496 (10)	
H1A	0.3337	-0.0668	0.5447	0.059*	
C20	0.4326 (9)	-0.1410 (3)	0.8225 (4)	0.104 (2)	
H20A	0.3823	-0.1756	0.8406	0.125*	
В	0.9019 (11)	0.2287 (5)	0.1340 (5)	0.126 (4)	
F4	0.9421 (6)	0.2774 (2)	0.0915 (3)	0.162 (2)	
F1A	1.0328 (10)	0.1992 (4)	0.1493 (5)	0.168 (5)*	0.675 (13)
F1B	0.7738 (19)	0.2625 (10)	0.1282 (13)	0.189 (11)*	0.325 (13)
C24	0.4638 (4)	0.1026 (2)	0.8380 (2)	0.0582 (11)	
C29	0.5659 (7)	0.1438 (3)	0.8177 (4)	0.098 (2)	
H29A	0.5879	0.1454	0.7677	0.118*	
C28	0.6372 (9)	0.1826 (4)	0.8672 (5)	0.121 (3)	
H28A	0.7097	0.2077	0.8520	0.145*	
C25	0.4326 (8)	0.1042 (5)	0.9100 (4)	0.127 (3)	
H25A	0.3619	0.0784	0.9262	0.152*	

C27	0.5981 (9)	0.1832 (4)		0.9393 (5)	0.116 (3)	
H27A	0.6395	0.2120		0.9729	,	0.139*		
C26	0.5039 (9)	0.1441 (6)		0.9625 (4	4)	0.146 (4)	
H26A	0.4837	0.1425		1.0128	,	0.176*	,	
F2	0.8636 (8)	0.2407 (4)		0.1998 (3	3)	0.209 (3)	
				,	,	, , , , , , , , , , , , , , , , , , ,	, ,	
Atomic displacer	nent parameters ($(Å^2)$						
-	U^{11}	U^{22}	U^{33}		U^{12}	U	-13	U^{23}
Cu1	0.0458 (3)	0.0768 (4)	0.0380 (3	3)	0.0015 (2)	0.	0080 (2)	-0.0052 (2)
P2	0.0386 (5)	0.0697 (8)	0.0379 (6	ő)	0.0084 (5)	0.	0029 (4)	-0.0040 (5)
P3	0.0427 (6)	0.0680 (7)	0.0356 (5	5)	0.0001 (5)	0.	0021 (4)	-0.0035 (5)
N1	0.0336 (16)	0.066 (2)	0.0394 (1	7)	0.0025 (15)	0.	0044 (14)	-0.0049 (15)
N3	0.049 (2)	0.079 (3)	0.044 (2)	,	-0.0034 (19) 0.	0035 (17)	0.0022 (18)
C4	0.039 (2)	0.082 (3)	0.036 (2)		0.011 (2)	0.	0034 (17)	-0.0010 (19)
C17	0.044 (2)	0.064 (3)	0.040 (2)		-0.0028 (18) 0.	0056 (18)	-0.0035 (18)
C2	0.0346 (19)	0.057 (2)	0.0347 (1	9)	0.0059 (17)	0.	0049 (16)	0.0001 (17)
C11	0.040 (2)	0.063 (3)	0.051 (2)	,	0.0016 (18)	0.	0017 (18)	-0.002(2)
N2	0.053 (2)	0.078 (3)	0.044 (2)		0.0000 (19)	0.	0047 (17)	-0.0053 (18)
C35	0.047 (2)	0.096 (4)	0.041 (2)		0.007 (2)	0.	006 (2)	0.005 (2)
C3	0.048 (2)	0.052 (2)	0.046 (2)		-0.0047 (18) 0.	0075 (18)	-0.0043 (18)
C5	0.053 (2)	0.068 (3)	0.040 (2)		0.008 (2)	0.	0021 (19)	-0.0027 (19)
C16	0.046 (2)	0.074 (3)	0.056 (3)		0.008 (2)	0.	004 (2)	-0.009 (2)
C34	0.052 (3)	0.083 (3)	0.037 (2)		0.007 (2)	0.	0037 (19)	-0.006 (2)
C18	0.051 (2)	0.066 (3)	0.045 (2)		0.000 (2)	—(0.006 (2)	-0.002 (2)
C10	0.054 (3)	0.077 (3)	0.056 (3)		-0.006 (2)	0.	002 (2)	0.001 (2)
C36	0.065 (3)	0.121 (5)	0.070 (4)		0.003 (3)	0.	027 (3)	0.016 (3)
C12	0.058 (3)	0.096 (4)	0.057 (3)		0.019 (3)	0.	011 (2)	0.012 (3)
C15	0.050 (3)	0.072 (3)	0.087 (4)		0.012 (2)	0.	005 (3)	-0.011 (3)
C33	0.079 (4)	0.107 (5)	0.062 (3)		0.009 (3)	0.	016 (3)	-0.019 (3)
C13	0.068 (3)	0.092 (4)	0.073 (3)		0.016 (3)	0.	002 (3)	0.024 (3)
С9	0.072 (4)	0.096 (4)	0.073 (4)		-0.013 (3)	0.	007 (3)	-0.001 (3)
C6	0.076 (3)	0.078 (4)	0.066 (3)		0.017 (3)	-(0.001 (3)	0.000 (3)
C19	0.072 (3)	0.077 (4)	0.077 (4)		-0.009(3)	—(0.005 (3)	0.018 (3)
C8	0.102 (5)	0.085 (4)	0.080 (4)		-0.016 (4)	0.	015 (4)	-0.002 (3)
C21	0.136 (7)	0.070 (4)	0.099 (5)		0.024 (4)	—(0.022 (5)	0.005 (3)
C30	0.086 (4)	0.083 (4)	0.063 (3)		-0.012 (3)	0.	013 (3)	-0.006 (3)
C23	0.065 (3)	0.079 (4)	0.094 (4)		0.011 (3)	0.	010 (3)	0.010 (3)
C38	0.085 (4)	0.112 (5)	0.088 (4)		-0.025 (4)	0.	007 (4)	0.027 (4)
C14	0.057 (3)	0.063 (3)	0.095 (4)		0.008 (2)	—(0.004 (3)	0.010 (3)
C22	0.089 (4)	0.102 (5)	0.097 (5)		0.039 (4)	0.	000 (4)	0.003 (4)
C7	0.129 (6)	0.059 (4)	0.088 (4)		0.020 (3)	0.	012 (4)	0.003 (3)
C39	0.072 (3)	0.090 (4)	0.062 (3)		-0.010 (3)	0.	003 (3)	0.007 (3)
C37	0.079 (4)	0.141 (7)	0.089 (5)		-0.012 (4)	0.	035 (4)	0.032 (4)
C31	0.110 (5)	0.073 (4)	0.087 (4)		-0.010 (3)	0.	002 (4)	-0.014 (3)
C32	0.106 (5)	0.093 (5)	0.086 (4)		0.010 (4)	0.	006 (4)	-0.032 (4)
F3	0.194 (5)	0.150 (4)	0.123 (3)		-0.071 (4)	0.	067 (3)	-0.056 (3)
C1	0.043 (2)	0.056 (3)	0.050 (2)		-0.0088 (18) 0.	0067 (19)	-0.0047 (19)

C20	0.123 (6)	0.073 (4)	0.116 (6)	-0.011 (4)	-0.008 (5)	0.027 (4)
В	0.130 (8)	0.122 (7)	0.129 (8)	-0.063 (6)	0.080 (7)	-0.049 (6)
F4	0.201 (5)	0.119 (4)	0.171 (5)	-0.015 (4)	0.083 (4)	-0.025 (3)
C24	0.048 (2)	0.079 (3)	0.047 (2)	0.004 (2)	-0.005 (2)	-0.014 (2)
C29	0.123 (5)	0.095 (5)	0.076 (4)	-0.038 (4)	-0.021 (4)	-0.005 (3)
C28	0.144 (7)	0.099 (5)	0.117 (6)	-0.029 (5)	-0.023 (5)	-0.029 (5)
C25	0.123 (5)	0.187 (7)	0.070 (4)	-0.058 (5)	0.008 (4)	-0.028 (4)
C27	0.121 (6)	0.103 (6)	0.123 (7)	0.011 (5)	-0.028 (5)	-0.057 (5)
C26	0.138 (7)	0.236 (11)	0.066 (4)	-0.041 (7)	0.012 (5)	-0.062 (6)
F2	0.266 (8)	0.264 (8)	0.101 (4)	-0.030 (6)	0.057 (5)	-0.084 (4)

Geometric parameters (Å, °)

Cu1—N3	2.039 (4)	C13—H13A	0.9300
Cu1—N2	2.050 (4)	С9—С8	1.345 (8)
Cu1—P3	2.2175 (17)	С9—Н9А	0.9300
Cu1—P2	2.2198 (16)	C6—C7	1.397 (8)
P2—C11	1.816 (4)	С6—Н6А	0.9300
P2—C5	1.816 (5)	C19—C20	1.372 (8)
P2—C4	1.855 (4)	С19—Н19А	0.9300
P3—C18	1.810 (5)	C8—C7	1.385 (9)
P3—C24	1.810 (5)	C8—H8A	0.9300
P3—C17	1.839 (4)	C21—C20	1.344 (10)
N1—C2	1.446 (5)	C21—C22	1.375 (10)
N1—C4	1.467 (5)	C21—H21A	0.9300
N1—C17	1.473 (5)	C30—C31	1.376 (8)
N3—C39	1.327 (7)	С30—Н30А	0.9300
N3—C35	1.353 (6)	C23—C22	1.378 (8)
C4—H4A	0.9700	С23—Н23А	0.9300
C4—H4B	0.9700	C38—C37	1.365 (9)
C17—H17A	0.9700	C38—C39	1.386 (8)
С17—Н17В	0.9700	C38—H38A	0.9300
C2—C1	1.377 (6)	C14—H14A	0.9300
C2—C3	1.390 (5)	C22—H22A	0.9300
C11—C16	1.371 (6)	C7—H7A	0.9300
C11—C12	1.381 (6)	С39—Н39А	0.9300
N2—C34	1.335 (5)	С37—Н37А	0.9300
N2—C30	1.344 (7)	C31—C32	1.350 (9)
C35—C36	1.389 (7)	C31—H31A	0.9300
C35—C34	1.474 (7)	C32—H32A	0.9300
C3—C1 ⁱ	1.385 (6)	F3—B	1.325 (8)
С3—НЗА	0.9300	C1—C3 ⁱ	1.385 (6)
C5—C6	1.395 (7)	C1—H1A	0.9300
C5—C10	1.403 (6)	C20—H20A	0.9300
C16—C15	1.386 (6)	B—F2	1.275 (8)
C16—H16A	0.9300	B—F4	1.323 (9)
C34—C33	1.389 (7)	B—F1B	1.447 (15)
C18—C19	1.384 (7)	B—F1A	1.451 (12)
C18—C23	1.387 (7)	F1B—F2	1.61 (2)

C10—C9	1.367 (7)	C24—C25	1.337 (8)
C10—H10A	0.9300	C24—C29	1.374 (8)
C36—C37	1.360 (9)	C29—C28	1.373 (8)
C36—H36A	0.9300	С29—Н29А	0.9300
C12—C13	1.390 (7)	C28—C27	1.361 (11)
C12—H12A	0.9300	C28—H28A	0.9300
C15-C14	1.359 (7)	C25—C26	1.420 (10)
C15—H15A	0.9300	C25—H25A	0.9300
C33—C32	1.356 (9)	C27—C26	1.307 (11)
С33—Н33А	0.9300	C27—H27A	0.9300
C13—C14	1.361 (7)	C26—H26A	0.9300
N3—Cu1—N2	80.60 (16)	C8—C9—C10	120.6 (6)
N3—Cu1—P3	128.36 (11)	С8—С9—Н9А	119.7
N2—Cu1—P3	112.60 (11)	С10—С9—Н9А	119.7
N3—Cu1—P2	116.53 (11)	C5—C6—C7	120.3 (6)
N2—Cu1—P2	115.57 (11)	С5—С6—Н6А	119.8
P3—Cu1—P2	102.42 (5)	С7—С6—Н6А	119.8
C11—P2—C5	103.4 (2)	C20-C19-C18	120.9 (6)
C11—P2—C4	102.5 (2)	С20—С19—Н19А	119.6
C5—P2—C4	105.9 (2)	С18—С19—Н19А	119.6
C11—P2—Cu1	119.61 (15)	C9—C8—C7	121.0 (6)
C5—P2—Cu1	111.45 (14)	С9—С8—Н8А	119.5
C4—P2—Cu1	112.67 (14)	С7—С8—Н8А	119.5
C18—P3—C24	103.3 (2)	C20—C21—C22	120.3 (6)
C18—P3—C17	103.0 (2)	C20-C21-H21A	119.9
C24—P3—C17	104.0 (2)	C22—C21—H21A	119.9
C18—P3—Cu1	124.13 (16)	N2-C30-C31	122.3 (5)
C24—P3—Cu1	112.77 (15)	N2-C30-H30A	118.8
C17—P3—Cu1	107.60 (14)	С31—С30—Н30А	118.8
C2—N1—C4	110.0 (3)	C22—C23—C18	121.1 (6)
C2—N1—C17	114.0 (3)	С22—С23—Н23А	119.5
C4—N1—C17	113.0 (3)	C18—C23—H23A	119.5
C39—N3—C35	119.5 (4)	C37—C38—C39	118.3 (6)
C39—N3—Cu1	127.0 (4)	С37—С38—Н38А	120.8
C35—N3—Cu1	113.3 (3)	С39—С38—Н38А	120.8
N1—C4—P2	114.5 (3)	C15—C14—C13	120.3 (5)
N1—C4—H4A	108.6	C15-C14-H14A	119.9
P2—C4—H4A	108.6	C13—C14—H14A	119.9
N1—C4—H4B	108.6	C21—C22—C23	119.4 (6)
P2—C4—H4B	108.6	C21—C22—H22A	120.3
H4A—C4—H4B	107.6	C23—C22—H22A	120.3
N1—C17—P3	109.8 (3)	C8—C7—C6	119.2 (6)
N1—C17—H17A	109.7	С8—С7—Н7А	120.4
РЗ—С17—Н17А	109.7	С6—С7—Н7А	120.4
N1—C17—H17B	109.7	N3—C39—C38	121.9 (6)
P3—C17—H17B	109.7	N3—C39—H39A	119.1
H17A—C17—H17B	108.2	С38—С39—Н39А	119.1
C1—C2—C3	118.7 (4)	C36—C37—C38	120.7 (6)
C1—C2—N1	118.3 (3)	С36—С37—Н37А	119.7

C3—C2—N1	123.0 (4)	С38—С37—Н37А	119.7
C16—C11—C12	118.9 (4)	C32—C31—C30	119.2 (6)
C16—C11—P2	118.3 (3)	С32—С31—Н31А	120.4
C12—C11—P2	122.8 (3)	С30—С31—Н31А	120.4
C34—N2—C30	118.3 (4)	C31—C32—C33	119.2 (6)
C34—N2—Cu1	114.3 (3)	C31—C32—H32A	120.4
C30—N2—Cu1	127.3 (3)	C33—C32—H32A	120.4
N3—C35—C36	120.7 (5)	$C2-C1-C3^{i}$	121.1 (4)
N3—C35—C34	116.4 (4)	C2—C1—H1A	119.4
C36—C35—C34	122.9 (5)	C3 ⁱ —C1—H1A	119.4
C1 ⁱ —C3—C2	120.2 (4)	C21—C20—C19	120.7 (6)
C1 ⁱ —C3—H3A	119.9	C21—C20—H20A	119.6
С2—С3—НЗА	119.9	C19—C20—H20A	119.6
C6—C5—C10	117.7 (5)	F2—B—F4	119.4 (8)
C6—C5—P2	119.6 (4)	F2—B—F3	117.5 (7)
C10—C5—P2	122.2 (4)	F4—B—F3	117.2 (8)
C11—C16—C15	120.9 (5)	F2—B—F1B	72.0 (10)
С11—С16—Н16А	119.6	F4—B—F1B	82.9 (12)
C15—C16—H16A	119.6	F3—B—F1B	91.4 (11)
N2-C34-C33	120.7 (5)	F2—B—F1A	101.1 (10)
N2-C34-C35	115.2 (4)	F4—B—F1A	98.0 (7)
C33—C34—C35	124.1 (5)	F3—B—F1A	95.0 (8)
C19-C18-C23	117.6 (5)	F1B—B—F1A	172.3 (12)
C19—C18—P3	120.2 (4)	B—F1B—F2	49.0 (7)
C23—C18—P3	122.2 (4)	$C_{25} = C_{24} = C_{29}$	115 7 (5)
C9—C10—C5	121.2 (5)	C25-C24-P3	118.8 (5)
C9—C10—H10A	119.4	C29—C24—P3	125.5 (4)
C5—C10—H10A	119.4	$C_{28} - C_{29} - C_{24}$	123 6 (7)
$C_{37} - C_{36} - C_{35}$	118.8 (6)	C28—C29—H29A	118.2
C37—C36—H36A	120.6	C24—C29—H29A	118.2
C35—C36—H36A	120.6	C27—C28—C29	117.6 (8)
C11—C12—C13	119.8 (5)	C27—C28—H28A	121.2
C11—C12—H12A	120.1	C29—C28—H28A	121.2
C13—C12—H12A	120.1	C24—C25—C26	122.1 (7)
C14—C15—C16	119.8 (5)	C24—C25—H25A	119.0
C14—C15—H15A	120.1	C26—C25—H25A	119.0
С16—С15—Н15А	120.1	C26—C27—C28	121.6 (7)
C32—C33—C34	120.2 (5)	С26—С27—Н27А	119.2
С32—С33—Н33А	119.9	С28—С27—Н27А	119.2
С34—С33—Н33А	119.9	C27—C26—C25	119.1 (7)
C14—C13—C12	120.4 (5)	С27—С26—Н26А	120.4
С14—С13—Н13А	119.8	С25—С26—Н26А	120.4
C12—C13—H13A	119.8	B—F2—F1B	59.0 (7)
N3—Cu1—P2—C11	78.8 (2)	N3—C35—C34—N2	4.4 (6)
N2—Cu1—P2—C11	-13.3 (2)	C36—C35—C34—N2	-174.9 (5)
P3—Cu1—P2—C11	-136.12 (17)	N3—C35—C34—C33	-176.4 (5)
N3—Cu1—P2—C5	-41.8 (2)	C36—C35—C34—C33	4.3 (8)
N2—Cu1—P2—C5	-133.93 (19)	C24—P3—C18—C19	119.0 (4)

P3—Cu1—P2—C5	103.28 (16)	C17—P3—C18—C19	-133.0 (4)
N3—Cu1—P2—C4	-160.8 (2)	Cu1—P3—C18—C19	-10.9 (5)
N2—Cu1—P2—C4	107.1 (2)	C24—P3—C18—C23	-60.7 (5)
P3—Cu1—P2—C4	-15.65 (17)	C17—P3—C18—C23	47.3 (5)
N3—Cu1—P3—C18	45.1 (2)	Cu1—P3—C18—C23	169.4 (4)
N2—Cu1—P3—C18	141.1 (2)	C6—C5—C10—C9	-0.5 (7)
P2—Cu1—P3—C18	-94.16 (17)	P2C5C10C9	-172.3 (4)
N3—Cu1—P3—C24	-80.8 (2)	N3—C35—C36—C37	-0.8 (8)
N2—Cu1—P3—C24	15.2 (2)	C34—C35—C36—C37	178.5 (5)
P2—Cu1—P3—C24	139.95 (18)	C16—C11—C12—C13	0.8 (8)
N3—Cu1—P3—C17	165.1 (2)	P2-C11-C12-C13	179.5 (4)
N2—Cu1—P3—C17	-98.96 (19)	C11—C16—C15—C14	-1.4 (8)
P2—Cu1—P3—C17	25.82 (16)	N2-C34-C33-C32	2.6 (8)
N2—Cu1—N3—C39	176.7 (4)	C35—C34—C33—C32	-176.6 (5)
P3—Cu1—N3—C39	-71.9 (4)	C11—C12—C13—C14	-1.8 (9)
P2—Cu1—N3—C39	62.7 (4)	C5—C10—C9—C8	0.2 (8)
N2—Cu1—N3—C35	1.2 (3)	C10—C5—C6—C7	0.8 (7)
P3—Cu1—N3—C35	112.6 (3)	P2—C5—C6—C7	172.8 (4)
P2—Cu1—N3—C35	-112.8 (3)	C23—C18—C19—C20	0.3 (8)
C2—N1—C4—P2	155.1 (3)	P3-C18-C19-C20	-179.4 (5)
C17—N1—C4—P2	-76.2 (4)	C10—C9—C8—C7	-0.1 (9)
C11—P2—C4—N1	165.4 (3)	C34—N2—C30—C31	-0.2 (8)
C5—P2—C4—N1	-86.6 (3)	Cu1—N2—C30—C31	-179.4 (4)
Cu1 - P2 - C4 - N1	35.5 (4)	C19—C18—C23—C22	0.0 (8)
C2-N1-C17-P3	-141.3 (3)	P3-C18-C23-C22	179.7 (5)
C4—N1—C17—P3	92.1 (4)	C16—C15—C14—C13	0.4 (8)
C18—P3—C17—N1	72.4 (3)	C12—C13—C14—C15	1.2 (9)
C24—P3—C17—N1	179.9 (3)	C20—C21—C22—C23	-1.0(11)
Cu1—P3—C17—N1	-60.2(3)	C18—C23—C22—C21	0.4 (10)
C4—N1—C2—C1	-83.7 (5)	C9—C8—C7—C6	0.4 (9)
C17—N1—C2—C1	148.1 (4)	C5—C6—C7—C8	-0.7 (9)
C4—N1—C2—C3	93.6 (4)	C35—N3—C39—C38	0.2 (8)
C17—N1—C2—C3	-34.6 (5)	Cu1—N3—C39—C38	-175.1 (4)
C5—P2—C11—C16	95.6 (4)	C37—C38—C39—N3	0.1 (9)
C4—P2—C11—C16	-154.5 (4)	C35—C36—C37—C38	1.0 (10)
Cu1—P2—C11—C16	-29.0 (4)	C39—C38—C37—C36	-0.7 (10)
C5—P2—C11—C12	-83.1 (4)	N2-C30-C31-C32	1.5 (10)
C4—P2—C11—C12	26.8 (5)	C30—C31—C32—C33	-0.8 (10)
Cu1—P2—C11—C12	152.3 (4)	C34—C33—C32—C31	-1.2 (10)
N3—Cu1—N2—C34	1.2 (3)	C3—C2—C1—C3 ⁱ	0.7 (7)
P3—Cu1—N2—C34	-126.6 (3)	$N1 - C2 - C1 - C3^{i}$	178.0 (4)
P2-Cu1-N2-C34	116 2 (3)	$C_{22} = C_{21} = C_{20} = C_{19}$	13(12)
N_{3} Cu1 N_{2} C30	-1795(4)	C18 - C19 - C20 - C21	-0.9(11)
P3—Cu1—N2—C30	52.7 (4)	F4—B—F1B—F2	-124.1 (7)
P2—Cu1—N2—C30	-64.5 (4)	F3—B—F1B—F2	118.6 (7)
C39—N3—C35—C36	0.2 (7)	C18—P3—C24—C25	-84.1 (6)
Cu1—N3—C35—C36	176.1 (4)	C17—P3—C24—C25	168.7 (6)
C39—N3—C35—C34	-179 1 (4)	Cu1—P3—C24—C25	52.4 (6)
000 000 000			

Cu1—N3—C35—C34	-3.3 (5)	C18—P3—C24—C29	98.9 (5)
C1—C2—C3—C1 ⁱ	-0.7 (7)	C17—P3—C24—C29	-8.4 (6)
N1—C2—C3—C1 ⁱ	-177.9 (4)	Cu1—P3—C24—C29	-124.7 (5)
C11—P2—C5—C6	-179.6 (4)	C25—C24—C29—C28	2.7 (11)
C4—P2—C5—C6	73.0 (4)	P3—C24—C29—C28	179.8 (6)
Cu1—P2—C5—C6	-49.8 (4)	C24—C29—C28—C27	-4.4 (12)
C11—P2—C5—C10	-7.9 (4)	C29—C24—C25—C26	-2.3 (12)
C4—P2—C5—C10	-115.3 (4)	P3-C24-C25-C26	-179.6 (8)
Cu1—P2—C5—C10	121.8 (3)	C29—C28—C27—C26	5.7 (14)
C12-C11-C16-C15	0.8 (7)	C28—C27—C26—C25	-5.5 (16)
P2-C11-C16-C15	-178.0 (4)	C24—C25—C26—C27	3.8 (16)
C30—N2—C34—C33	-1.9 (7)	F4—B—F2—F1B	70.6 (13)
Cu1—N2—C34—C33	177.5 (4)	F3—B—F2—F1B	-81.9 (13)
C30—N2—C34—C35	177.4 (4)	F1A—B—F2—F1B	176.5 (12)
Cu1—N2—C34—C35	-3.3 (5)		

Symmetry codes: (i) -x+1, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
C20—H20A…F1B ⁱ	0.93	2.43	3.36 (2)	171	
C30—H30A···F2 ⁱⁱ	0.93	2.31	3.216 (9)	164	
C33—H33A…F3 ⁱⁱⁱ	0.93	2.42	3.319 (8)	161	
Symmetry codes: (i) $-x+1$, $-y$, $-z+1$; (ii) $x-1/2$, $-y+1/2$, $z+1/2$; (iii) $x-1$, y , $z+1$.					

sup-10

Fig. 1

